BeyondC
Quantum Information Systems Beyond Classical Capabilities
Photonic Quantum Computing
Special Research Programme (SFB)
beyondc.at
Project Abstract
Project Abstract
Single photons provide unique advantages for quantum information applications due to their robustness, individual addressability and bosonic character. Moreover, the intrinsic mobility of single photons makes them the best quantum information carriers for quantum networks, delegated quantum cloud computing [R13-1] and novel quantum computation schemes such as Boson Sampling and quantum random walks [R13-2]. The long-term goals of our project are the development of quantum photonics technology for (i) secure delegated quantum computing in real-life scenarios and quantum homomorphic encryption schemes that enable a broad class of quantum computation on encrypted data, and (ii) hybrid quantum-classical systems, where classical computation is supported by feasible quantum photonics technology, and (iii) implementing machine learning and random-walk computations using complex integrated network structures, and (iv) demonstrating novel quantum protocols that exploit superimposed orders of gates for outperforming standard,
fixed-order schemes.